INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE B.MATH - Third Year, 2022-23

Statistics - III, Semesteral Examination, November 23, 2022Time: $2\frac{1}{2}$ HoursTotal Marks: 50

1. Suppose $\mathbf{Y} \sim N_p(\mu, \Sigma)$ where $\Sigma = \sigma^2 (I_p + \rho \mathbf{11'}), 0 < \rho < 1$.

(a) Show that $\sigma(I_p + \alpha \mathbf{11'}) = \Sigma^{1/2}$ if $\alpha = (\sqrt{1 + p\rho} - 1)/p$.

(b) Find the probability distribution of $\mathbf{Z} = \frac{1}{\sigma} \left(I_p - \frac{\alpha}{1+p\alpha} \mathbf{1} \mathbf{1}' \right) (\mathbf{Y} - \mu).$

(c) Show that $\mathbf{Z}'\mathbf{Z} \sim \chi_r^2$. Find r.

(d) Find the partial correlation coefficient, $\rho_{13.2}$, between Y_1 and Y_3 given Y_2 ($\mathbf{Y} = (Y_1, Y_2, \dots, Y_p)'$). [3+4+2+3]

2. Consider the model $\mathbf{Y} = \mathbf{X}\beta + \epsilon$, where $\mathbf{X}_{n \times p}$ has 1 as its first column and may not have full column rank; also $\epsilon \sim N_n(\mathbf{0}, \sigma^2 I_n)$. Let $\hat{\beta} = (\mathbf{X}'\mathbf{X})^-\mathbf{X}'\mathbf{Y}$ and $RSS = (\mathbf{Y} - \mathbf{X}\hat{\beta})'(\mathbf{Y} - \mathbf{X}\hat{\beta})$, where $(\mathbf{X}'\mathbf{X})^-$ is any generalized inverse of $(\mathbf{X}'\mathbf{X})$.

(a) Find the joint distribution of $(\mathbf{1'Y}, RSS)$.

(b) Suppose p = 2. When do we have that $\hat{\beta}_0$ and $\hat{\beta}_1$ are independently distributed? [6+6]

3. Consider the one-way model:

$$y_{ij} = \mu + \alpha_i + \epsilon_{ij}, \ 1 \le j \le 10; \ 1 \le i \le 4,$$

where ϵ_{ij} are i.i.d. $N(0, \sigma^2)$, with the standard identifiability constraints on α_i .

(a) Show that $\alpha_1 - \alpha_2$ is estimable.

(b) What is the Bonferroni inequality used for multiple comparisons?

(c) Construct a $100(1-\alpha)\%$ simultaneous confidence set for

$$(\alpha_1 - \alpha_2, \alpha_2 - \alpha_3, \alpha_3 - \alpha_4).$$

$$[3+3+6]$$

4. Consider testing the hypothesis $H_0: \beta_1 = \beta_2 = \cdots = \beta_{p-1} = 0$ under the model $\mathbf{Y}_{n \times 1} = X_{n \times p} \beta_{p \times 1} + \epsilon_{n \times 1}$, where $\epsilon \sim N_n(\mathbf{0}, \sigma^2 I_n)$.

(a) Define the F-ratio statistic to test H_0 . Find its expected value when H_0 is true, and again when H_0 is false. Explain why the expected value is larger when H_0 is false.

(b) Define the coefficient of determination, R^2 . Find its probability distribution when H_0 is true, and show that it is a standard distribution. [9+5]