INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE B.MATH - Third Year, 2022-23

Statistics - III, Semesteral Examination, November 23, 2022 Time: $2 \frac{1}{2}$ Hours

Total Marks: 50

1. Suppose $\mathbf{Y} \sim N_{p}(\mu, \boldsymbol{\Sigma})$ where $\Sigma=\sigma^{2}\left(I_{p}+\rho \mathbf{1 1}\right), 0<\rho<1$.
(a) Show that $\sigma\left(I_{p}+\alpha \mathbf{1 1}^{\prime}\right)=\Sigma^{1 / 2}$ if $\alpha=(\sqrt{1+p \rho}-1) / p$.
(b) Find the probability distribution of $\mathbf{Z}=\frac{1}{\sigma}\left(I_{p}-\frac{\alpha}{1+p \alpha} \mathbf{1 1}\right)(\mathbf{Y}-\mu)$.
(c) Show that $\mathbf{Z}^{\prime} \mathbf{Z} \sim \chi_{r}^{2}$. Find r.
(d) Find the partial correlation coefficient, $\rho_{13.2}$, between Y_{1} and Y_{3} given Y_{2} $\left(\mathbf{Y}=\left(Y_{1}, Y_{2}, \ldots, Y_{p}\right)^{\prime}\right)$. $[3+4+2+3]$
2. Consider the model $\mathbf{Y}=\mathbf{X} \beta+\epsilon$, where $\mathbf{X}_{n \times p}$ has $\mathbf{1}$ as its first column and may not have full column rank; also $\epsilon \sim N_{n}\left(\mathbf{0}, \sigma^{2} I_{n}\right)$. Let $\hat{\beta}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-} \mathbf{X}^{\prime} \mathbf{Y}$ and $R S S=(\mathbf{Y}-\mathbf{X} \hat{\beta})^{\prime}(\mathbf{Y}-\mathbf{X} \hat{\beta})$, where $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-}$is any generalized inverse of ($\mathbf{X}^{\prime} \mathbf{X}$).
(a) Find the joint distribution of $\left(\mathbf{1}^{\prime} \mathbf{Y}, R S S\right)$.
(b) Suppose $p=2$. When do we have that $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ are independently distributed?
$[6+6]$
3. Consider the one-way model:

$$
y_{i j}=\mu+\alpha_{i}+\epsilon_{i j}, 1 \leq j \leq 10 ; 1 \leq i \leq 4
$$

where $\epsilon_{i j}$ are i.i.d. $N\left(0, \sigma^{2}\right)$, with the standard identifiability constraints on α_{i}.
(a) Show that $\alpha_{1}-\alpha_{2}$ is estimable.
(b) What is the Bonferroni inequality used for multiple comparisons?
(c) Construct a $100(1-\alpha) \%$ simultaneous confidence set for
$\left(\alpha_{1}-\alpha_{2}, \alpha_{2}-\alpha_{3}, \alpha_{3}-\alpha_{4}\right)$.
4. Consider testing the hypothesis $H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{p-1}=0$ under the model $\mathbf{Y}_{n \times 1}=X_{n \times p} \beta_{p \times 1}+\epsilon_{n \times 1}$, where $\epsilon \sim N_{n}\left(\mathbf{0}, \sigma^{2} I_{n}\right)$.
(a) Define the F-ratio statistic to test H_{0}. Find its expected value when H_{0} is true, and again when H_{0} is false. Explain why the expected value is larger when H_{0} is false.
(b) Define the coefficient of determination, R^{2}. Find its probability distribution when H_{0} is true, and show that it is a standard distribution. $\quad[9+5]$

